
66 IEEE TRANSACTIONS ON EDUCATION, VOL. 52, NO. 1, FEBRUARY 2009

Designing and Using Software Tools for Educational
Purposes: FLAT, a Case Study

Jose Jesus Castro-Schez, Ester del Castillo, Julian Hortolano, and Alfredo Rodriguez

Abstract—Educational software tools are considered to enrich
teaching strategies, providing a more compelling means of explo-
ration and feedback than traditional blackboard methods. More-
over, software simulators provide a more motivating link between
theory and practice than pencil-paper methods, encouraging active
and discovery learning in the students. The use and development
of educational software is a field that has grasped the attention of
teachers and researchers from different disciplines and theoretical
frameworks in the last few years. In this paper, the authors present
SoftwarE for Learning Formal languages and Automata theory
(SELFA), an educational software simulator tool, designed to im-
prove the quality of teaching in Theory of Computation courses.
The aim of this tool is to make it easier to teach and to learn the
main concepts of this subject, whose level of abstraction makes
both activities difficult. The main advantage of this tool over other
software tools designed with the same purpose, is that it has been
developed using web technologies. This allows the user to collect
and analyze data on how and when a student or group has used
the tool. These numerical data can then be used to evaluate the
student’s work.

Index Terms—Computer-supported learning, formal languages
and automata theory (FLAT) learning, formal learning environ-
ments, theoretical computer simulators, WWW-based course-sup-
port systems.

I. INTRODUCTION

U SING educational software can be useful in the teaching
and learning of any given subject and it may be a great

aid in the quest for excellence and improvement in the quality
of teaching in any university institution. The aim of this paper
is to present SoftwarE for Learning Formal languages and
Automata theory (SELFA), an educational software simu-
lator tool (http://apps.oreto.inf-cr.uclm.es/selfa/) and to show
how it has been designed and developed to improve teaching
quality in the subject of formal languages and automata theory
(FLAT) in the School of Computer Science at the University of
Castilla-La Mancha (UCLM), Spain. The goals of this subject
are to introduce the theory of computation through a set of
abstract machines that serve as models for computation—finite
automata, pushdown automata, linear-bounded automata, and
Turing machines—and to examine the relationship between

Manuscript received October 15, 2007; revised November 30, 2007. Cur-
rent version published February 4, 2009. This work was supported by Research
Projects e-PACTOS (ref. PAC-06-141) and SARASVATI (ref. PBC06-0064)
funded by Junta de Comunidades de Castilla-La Mancha (JCCM).

The authors are with the Department of Technology and Informa-
tion Systems, Escuela Superior de Informática, University of Castilla-La
Mancha, Ciudad Real 13071, Spain (e-mail: JoseJesus.Castro@uclm.es;
Ester.Castillo@uclm.es).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TE.2008.917197

these automata and formal languages. Additional topics beyond
the automata classes themselves include deterministic and non-
deterministic machines, regular expressions, regular grammars,
and context-free grammars.

SELFA may be projected onto a whiteboard at the front of
the class to help teachers improve instruction, as a classroom
aid. This capability improves the lecture by making it possible
to include interactive animations of the various automata or al-
gorithms. Moreover, the tool may be included as an interac-
tive, hands-on component on which students have a chance to
work, so that they can study the subject, and check whether they
are properly grasping and absorbing the associated theoretical
knowledge. Both of these applications of SELFA can signifi-
cantly increase student motivation and productivity.

In most cases, the use of examples to teach concepts and al-
gorithms is vital in making the students understand them better.
In these examples, a perfectly well-defined series of steps is fol-
lowed. Doing this by hand is too time consuming and so the per-
formance of these steps should be automatized and implemented
in an application. The interested reader can find a variety of soft-
ware tools that have been designed, implemented and used to
that end. Examples include FLUTE [9], FOLA [23], JCT [24],
[25] JFLAP [26], [27] SEFALAS [18], SEPa! Project [30], or
THOTH [11], [12]. These tools are being used in the teaching
and learning of FLAT concepts and are freely available via the
Internet.

In the design of the tool proposed in this paper, the authors
have tried to include the most interesting aspects of the tools
aforementioned, namely:

• a graphical user interface that is appealing to the user;
• a text mode input that allows the user to interact easily with

the tool;
• an interactive presentation mode to allow experimentation

with concepts and algorithms;
• a visual, textual and tabular object representation that pro-

vides several levels of abstraction;
• a display of the intermediate steps of the different algo-

rithms rather than just the final solution.
In addition, certain extra characteristics have been added,

such as the ability to run via a web browser without any need
for local installation or automatically installed plugins (SELFA
uses a Client/Server architecture) and the use of a database
to collect tool use data. The recorded information will be
used as relevant to generate reports and statistics to allow the
teacher analyze work done by students. Web-based design is
the preferred option in educational software design, since it
simplifies installation and platform compatibility issues, and
provides immediacy of access [4], [8], [24].

0018-9359/$25.00 © 2008 IEEE

CASTRO-SCHEZ et al.: DESIGNING AND USING SOFTWARE TOOLS 67

Other aspects of the tool that are worth highlighting are that
it allows the following:

• a set of objects (automata and grammars) to be defined, ma-
nipulated and used by means of algorithms or operations in
one single step;

• the use of variables for storing intermediate results which
can then be worked on subsequently.

These features allow the student to experiment with automata
and grammars in order to fully develop a solid understanding of
these objects.

The SELFA design is based on a formal specification lan-
guage, which is used to define automata (finite-state and push-
down) or grammars (regular and context-free) and the algo-
rithms or operations that may apply to them. Grammars and the
corresponding parsing machines are based on automata theory.
The language also provides variables to save intermediate re-
sults for future use. Once this formal language that defines what
an input should be is established, it is necessary to generate a
program for processing that language, as well as an architecture
that will facilitate its use and a framework for the integral man-
agement of the tool functionality.

Using a formal specification language and its processor to
solve problems allows the teacher to make use of the tool to
demonstrate the application of some of the subject knowledge to
solve a real-life problem. This ability can significantly improve
the pedagogy of the course.

The remaining part of this paper is laid out as follows: in the
next section the problem to be solved is set out and analyzed.
Section III tackles how the SELFA [16] application has been
designed and developed. After that, an example will be given of
how the tool is used, as far as its main operation is concerned.
Finally, some conclusions are put forward, along with data
on the use of the tool in the academic years 2005–2006 and
2006–2007.

II. FLAT: AN OVERVIEW

The subject of FLAT is of great importance in the overall
training of those who seek a degree in computer engineering,
since it provides the fundamental theories of the discipline. The
basic tenets of FLAT enable a better grasp of computer engi-
neering, together with its origins (the historical evolution of the
theory of computation and mathematical theory) and equip one
to explore its problems and possibilities [15], [19]–[21]. Both
formal languages and automata theory are central topics in the
curriculum of Computer Science.

At the present time, there seems to be a general concern that
education should be practical, above all. As a result, FLAT is no
longer a core subject in most computer science curricula. Sig-
nificantly, the topics of which FLAT consists do not appear in
the primary proposals for foundation subjects in degree courses
for computer engineering in Spanish universities [1]. The au-
thors believe, or at least firmly hope, that universities will at
least give students the chance of receiving teaching in this dis-
cipline, within the optional subjects they offer. When students
leave university, they should be familiar with automata, gram-
mars, and formal languages—knowledge which will allow them
to analyze, understand, and solve problems.

The FLAT subject topics can be structured in four thematic
units, each one of which groups together various themes. The
topics are as follows:

• Introduction to formal languages and grammars;
• Regular languages and grammars;
• Context-free languages and grammars;
• Turing machines.
To learn a subject and get a true grasp of the knowledge and

concepts within it inevitably means that the student must exper-
iment with concepts and algorithms. In most cases, doing this is
not at all feasible on a large scale in class, due to the quantity of
topics to be studied and to the limited time available.

Taking steps to reduce this problem has, thus, become in-
creasingly important. One possible solution consists in giving
out material to the students for them to study before it is covered
in class, so that class time can be fully given over to doing exper-
iments and running the algorithms step-by-step. The drawback
with this approach is simply that the concepts that the students
have to learn are often too complicated and abstract for them to
be understood without their having been first explained by the
teacher.

An alternative solution involves designing and handing out a
whole set of exercises, along with their solutions, so that each
individual can solve them on his or her own and check the result
him/herself. The difficulty here is that this repository of exer-
cises needs to be continually refreshed.

Instead, this paper proposes a third solution, the design and
development of an application which has been given the name
SELFA. This application allows students to choose a set of ex-
ercises on the subject material, and then to generate solutions to
those exercises, as well as to access all the information needed to
understand them. This approach could motivate students in their
study of the subject, as they are the ones choosing their own ex-
ercises, and would also foster creativity and their capacity for
analysis.

Furthermore, the tool is also meant to be used in lectures
given by the teacher as an aid in his or her explanations, thereby
improving the teaching itself. The design and development of
SELFA sets out to improve the whole teaching-learning process
of the subject of FLAT.

The present situation of European universities is that they are
moving toward the European Higher Education Area (EHEA)
and toward the European Credit Transfer System (ECTS) [2],
whose aims are to reflect the real effort required of, and spent
by, the student in reaching a number of goals. So in addition
to the aforementioned, features a system that is able to mon-
itor each student’s use of SELFA has had to be incorporated, to
allow that individual’s work on FLAT to be assessed. This mon-
itoring system is one of the main advantages of SELFA over
other tools designed with the same purpose [3], [6], [9], [17],
[18], [22]–[27], [30].

III. DESIGN OF THE SELFA TOOL

In the design of the SELFA [16] application, other existing
tools have been taken into account. These include JFLAP [26],
[27], JCT [24], [25] SEFALAS [18], as well as the SEPa! Project
[30] and ProleTool [28], [29]. The needs of potential users of the

68 IEEE TRANSACTIONS ON EDUCATION, VOL. 52, NO. 1, FEBRUARY 2009

tool have been also kept in mind. SELFA is intended to be used
by two kinds of user—computer science students and university
teachers. The needs, wishes and priorities of these two groups
may be the same, but they may well differ, and this must be
borne in mind to achieve a design that will satisfy both types of
user.

The main functionality that the tool must offer, from the point
of view of the teacher and student, is that of accepting exercises
and of working out the solutions to these. This process should
be performed clearly and simply, so that understanding the way
it reached those solutions is straightforward.

That simplicity is a common goal for both sorts of user, but
there are other desirable characteristics that would be wished to
add to that objective if the application is to become both prac-
tical, likely to be used. The tool should be as follows:

• time unlimited—be able to be used at any time of the day;
• computer-independent and simple to install, so that it can

be used in the student’s personal computer or in those
of the labs, the theory classes or on the teacher’s own
computer;

• easily upgradable. Implicitly, this tool is design with con-
tinual improvement in mind. Any change in the application
ought to be easily transferable to computer upon which it
has been installed. An upgrade system needs to be built in,
to that end.

• intuitive, with a user-friendly interface, both when exer-
cises are being introduced, when explanations are being
explored, and in all the operations that the user can carry
out with the tool;

• flexible in operation—making it easy to put in as many
exercises as are wished and even use intermediate results
to perform operations on these;

• accurate—providing information that is correct and error-
free;

• comprehensive—providing all the information that is
needed to understand the answers that have been obtained;

• platform-independent—able to be executed on any plat-
form, i.e., Unix, Linux, Windows providing consistent
appearance and functionality across platforms.

From the teachers’ point of view, it would be desirable for the
application to have the following general characteristics, being
as follows:

• archetypal—serving as an example for future students of
how to use theoretical and practical knowledge in the sub-
ject to solve a real problem. In the lectures it should be an
example of how to apply concepts studied;

• accessible, having easy and fast access so that it may be
used as a teaching aid tool in any given location;

• functional, having access to the most important with op-
tions, appropriate presentation of the information gener-
ated, depending on the particular setting and purpose;

• transparent—allowing work done with the tool to be
viewed, together with the user, if the user allows this. This
information can later be used to assess the work done by
the student when he or she is learning the subject concepts;

• pedagogically useful—being usable as a teaching tool to
design automata, illustrate how automata work and the op-
eration of several useful algorithms;

Fig. 1. Incremental design and development of SELFA tool.

• widely available as free software, developed with a GPL
licence, so that people who are interested in doing so can
improve the tool.

The tool was designed incrementally (see Fig. 1). The first
step in the process was to decide what exercises were to be done,
implementing the algorithms to carry that out. Second, a mecha-
nism for invoking the algorithms was set up. Then this was inte-
grated into an architecture that fulfilled the initial requirements,
and finally the capability was added for the system to meet the
demands that the user had for the tool. Each step in the design
process yielded a product that students and teachers were able
to try out and test. Into each of these was built a mechanism to
follow up its use. The tool also incorporated a system for gath-
ering comments and suggestions from users, to contribute to the
improvement of the tool.

During this process, new requirements emerged which were
considered in the final design and development of the SELFA
tool. These additional characteristics were that the tool should

• have a language that is easy to learn and use;
• be efficient, to make it possible to work out answers to

problem-exercises quickly;
• provide helpful support, in the form of a kind of user’s

manual system, where users can refer their queries about
anything to do with the tool;

• employ uniform notation, using the same notation for au-
tomata as for grammars; moreover, this notation should re-
semble as closely as possible that used in the most impor-
tant books in the field [15], [19]–[21];

• provide diagram support, showing answers in diagram
form to make the solutions easier to understand.

The students were involved in the design of the tool, and their
comments having been drawn upon for its subsequent improve-
ment has encouraged them to use the tool.

Following section details the design decisions taken to meet
user requirements.

A. Definition of the SELFA Input

The first decision to be taken was that of how to input the
exercises to the tool. This required the definition of what ex-
actly the input was going to be. An input to the SELFA system
consists in the definition of one or more automata (finite-state or
pushdown) and one or more grammars (regular or context-free),
along specifying a series of operations on those elements. These

CASTRO-SCHEZ et al.: DESIGNING AND USING SOFTWARE TOOLS 69

operations may or may not give intermediate results which may
be used for further operations.

The definition of an exercise will imply the use of a reserved
word associated with each operation, together with some ar-
guments, amongst which a previously-defined grammar or au-
tomaton on which to apply the operation will be found.

To determine how the input to SELFA was going to be pro-
vided, the various alternatives used in the existing tools were
studied: by means of forms [9], [10], in diagrams [25], [27],
[30] or using an input language [13], [18], [23], [29]. The dia-
gram option is a good one for users who are not specialists in
this area, but the drawbacks are that interaction with the tool is
slow and work has to be done on-line. Input by means of forms
has as its main advantage that of being a guided process, which
makes it ideal for users who are new to the process, but this has
the same negative aspects as does diagram input.

Therefore, the authors chose to use an input file written in
a given language in which automata, grammars and the exer-
cises to be done are specified. This alternative, though having
the disadvantage of forcing the user to learn the language, has
the major advantage of allowing users to work “off-line” and of
providing a fast way of inputting exercises. To write the exer-
cises, all that is needed is a text editor to input the exercise or
exercises for which an answer is required. The drawbacks to this
method can be reduced by designing a language that is simple
and easy to learn.

A further decision is that of what a solution consists of and
how that will be presented to the user. As solutions, SELFA
provides the following:

• when the input is correct: new automata or grammars, with
additional information that is useful in understanding the
solution and how it has been reached;

• when the input is not correct: a set of useful messages for
detecting errors in the input.

The tool offers a mechanism which to allow the user to navi-
gate both through the input, and through the information given
as output.

The exercises that SELFA solves can be put into three large
groups [16], shown in the following:

• exercises on finite-state automata;
• exercises on pushdown automata;
• exercises on grammars (regular and context-free).
Each exercise solved requires the design and implementation

of several algorithms.

B. Designing the Input Language for the SELFA Tool

A little language (SELFA language) was designed to define
the SELFA input (see Section II-A) and its processor imple-
mented.

Designing the input SELFA language was a rather delicate
process, since this is one of the most important parts of the tool.
This language could in future be expanded to include additional
features.

The characteristics of the language are as follows:
• its similarity to CUP language, which makes it easier to

learn;
• its allowing all the exercises the user wants to perform to be

included in a single file input, thus letting all the problems

be solved in one operation. This feature is useful when
there is limited time on the Internet or when the user is
working off-line.

• its allowing intermediate results of the operations per-
formed to be stored in variables which will be operated on
again later;

• its having a single print operation, which will behave in one
of two ways according to what it is given as its argument
(an automaton or a grammar).

The definition of a grammar normally implies the establishing
of three aspects [14] as follows:

• Lexical structure; the building blocks of the language
called lexical symbols, lexical units or tokens. They will
be specified by regular expressions.

• Syntactic structure; rules which establish how to construct
valid sentences in the language using the tokens as basic
elements. The syntactic structure of the language will be
described precisely by a context-free grammar.

• Context and semantic; rules to check context conditions
imposed by the language specification and to collect infor-
mation for semantic processing.

The first noteworthy aspect is that the language designed is
case sensitive, meaning that it differentiates between upper and
lower case letters. Thus, the interpretations of the words au-
tomaton and Automaton will be different.

The tokens of the SELFA language are as follows:
• Identifiers—names chosen by the user to identify objects

of interest.
• Elements. The symbol IT corresponds to the token ele-

ment. The elements are those words which the user em-
ploys to name language terms such as the members of the
input alphabet of an automaton or its states, as well as the
terminal and nonterminal symbols of a grammar. Other ex-
amples include the elements that make up the productions
of a grammar and the transitions of an automaton.

• Separators. There is a set of characters that support the
syntactic of the language. This set consists of punctuation
marks:
;, :=(implication) (alternative) () =(assignation)
$(empty-string)

• Keywords. They are names chosen by the authors to name
operations and to help determine, as separators do, the syn-
tactic structure.

The designed language allows users to include comments
with explanatory text in its code, thus improving clarity and leg-
ibility. Comments in the language are used in a similar way to
that of the or Java programming languages, that is to say, be-
ginning with “ ”’ and will end with “ .” The processor will
ignore all the characters that are found within both marks.

The syntax of the proposed language is not too complicated;
its goals are to help the user to become familiar with it quickly
and to make it as simple and convenient as possible to use.
The syntax expressed in Extended Backus Naur Form (EBNF)
is shown in http://apps.oreto.inf-cr.uclm.es/selfa/. In this lan-
guage there are semantic restrictions that can not be expressed
by means of syntax [16].

Examples of files written in SELFA language can be found
in [16].

70 IEEE TRANSACTIONS ON EDUCATION, VOL. 52, NO. 1, FEBRUARY 2009

C. Processing the Input of the SELFA Tool

The SELFA tool needs a program that accepts as input a text
in the language presented in Section III-B, then checks whether
the input text is valid and correct or not, and produces as output
the solutions of those exercises given, as well as all the informa-
tion needed to understand them. In other words, the program an-
alyzes the input, constructs a semantic representation, and syn-
thesizes their output from it.

This program, a language processor, has been designed and
developed in the traditional modular way, i.e., the front-end
has been broken down into three modules and the back-end
as a single module [14]. The lexical analysis module isolates
SELFA language tokens in the input text. The syntax analysis
module converts the stream of tokens into an abstract syntax tree
(AST) in accordance with the SELFA language syntax. The con-
text handling module collects context information from various
places in the input text, annotates nodes with the results, checks
context conditions imposed by the SELFA language specifica-
tion and translates language-specific constructs in the AST into
more general constructs (intermediate code). The solution gen-
eration module processes the intermediate code, performing all
operations in automata and grammars.

In the language processor construction process, attention was
first of all paid to the analysis or front-end phase. The lexical an-
alyzer was designed and generated automatically from regular
descriptions of the tokens. The syntax analyzer was generated
automatically. The syntax structure to be recognized was speci-
fied using a context-free grammar. The automated context-han-
dling methods implemented are based on attribute grammars.

Once the analysis phase had been developed, the synthesis or
back-end phase was tackled, where a series of algorithms was
implemented. These carry out a set of defined operations on au-
tomata and grammars. During the synthesis phase, the analysis
and gathering of information are integrated, by invoking the al-
gorithms which solve the problem-exercises. From the valid and
correct inputs, the analysis phase of the processor obtains the
relevant information from each exercise and communicates this
to the synthesis phase, which in turn takes on the task of solving
these problems by invoking the algorithms that perform the ap-
propriate operations.

The language processor has the following characteristics:
• Portability. Having been implemented in Java program-

ming language the processor is thus multiplatform,
allowing it to be run on any computer, regardless of its
operating system (reducing machine dependency). Note
also that the output of the processor will be given in
XML language, as will be discussed in more detail in
Section III-D.

• Extendibility. The processor was designed in such a way as
to be able to add new characteristics if desired; for example
new algorithms could be added for solving more problem-
exercises.

• Integrity. The processor works properly, obtaining the right
answers when the input is correct and giving a report on as
many errors as possible when the input is not correct. It
has a mechanism for error recovery, any syntactical error

Fig. 2. Simplified structure of the language processor that has been developed.

this could be repaired so that the processor can continue
processing the input, analyzing as much of it as possible.

Fig. 2 shows how the data flow is produced, from the input to
the processor to its output.

D. Defining the SELFA Tool Output

Section III-B above shows how the exercises are to be input
to the tool by means of a language, as well as how the inputs,
or better still the exercises, are to be analyzed and processed,
using a processor of that language. Section III-C indicated how
the answers to these are worked out by the invoking of the corre-
sponding algorithms. The task that remains is to determine how
the solutions are going to be presented to the user in such a way
that s/he is able to navigate through them, as well as how to give
them in a form that can be displayed on any computer.

The internal format in which the solutions will be generated
is the eXtended Markup Language (XML), because this is a
language that is easy for external applications to generate and
use. What is more, these solutions in XML can be formatted to
return the answer in HTML, describing how to display the data
in a Web page, thanks to XSL technology. That feature would be
really useful when integrating this part into the external interface
of the tool to format and transfer data in an easy and consistent
way on the World Wide Web.

XML allows the definition of the markup elements, so as to
tailor a document to the user’s needs, storing and structuring the
data in that document as desired. An Automa element that
holds other elements, such us Alfabeto Estados
and Transiciones , and so forth can be created.

E. Description of SELFA Architecture

One of the most important requirements for this tool is that
it be as easy to install and update as possible. The ideal would
be for it to need no installation at all, which would make its use
on any computer more feasible, regardless of where that appli-
cation is running. Something else that is just as essential is for
the tool to register and monitor user activity, with special atten-
tion to student use. Given this, the decision was taken to create a
centralized application using a Client/Server Web architecture.

CASTRO-SCHEZ et al.: DESIGNING AND USING SOFTWARE TOOLS 71

Fig. 3. The architecture of the SELFA tool.

The architecture chosen for the tool was a multilayer Web ar-
chitecture, in which each layer offers its services to the layer im-
mediately above it and receives the services of the layer below.
By doing all this, the level of coupling and of complexity in the
tool has been reduced.

The Web architecture has the advantages outlined as follows:
• all the workload falls on the Server, where SELFA is run-

ning; this makes the Client (user side) very light;
• there is no local installation in the Client, just a browser

connected to the Internet;
• the architecture allows collection and storage of user data

in a database held in the server.
The updatings of SELFA, therefore, are immediate, since the

centralized application means that, for the changes to be visible
wherever the application is used, it is only necessary to update
the Server side.

The Web part of the tool was developed using the PHP
scripting language, which has the characteristics of being exe-
cuted on the Server, of being multiplatform and of supporting
a large number of users. The database management system on
which the users’ data, and activities they carry out with the
tool, will be registered and stored will be MySQL. MySQL
is extremely powerful; it is also free and has a high level of
productivity, a low level of consumption and a short response
time. Answers are returned in HTML.

Fig. 3 shows the architecture of the tool, together with its
information flow. The process starts when the user (student or
teacher) sends the exercise over the Web to the Server, where the
application is running [16] by means of a form that is accessible
to any browser (e.g., Firefox, Microsoft Explorer, etc.).

The Client establishes a connection with the Server, the user
authenticates himself and sends exercises. Once the Server has
received the exercise or exercises provided by the user, it ex-
tracts the relevant information about the person who has invoked
the tool, by means of a set of scripts. The Server then processes
the file using a language processor constructed for that purpose.

This processor analyzes the file and extracts from it the infor-
mation necessary to the problems posed, so it can then invoke
the algorithms for generating a solution to them.

The scripts then take charge of “Encapsulating” and format-
ting this information on a web-page so this can be published on
the Server for the user to see the end result which contains the
answers to his or her submitted exercises.

F. SELFA’s Additional Capacities

The SELFA tool, apart from solving the exercises proposed
by the user, enables:

• management of SELFA users (creating, modifying or
deleting user accounts);

• administration of SELFA functionalities and permissions
(setting what can be done, when and by whom);

• publication of SELFA news (publishing information about
recent events related to the subject or tool and sending these
to users by e-mail);

• storage of SELFA users’ use data in each academic course
(generating reports by a student or group of students in the
form of tables and diagrams);

• management of a repository of exercises written in the
SELFA language. This repository could be used to store
the examples used in normal classrooms, to explain the al-
gorithms or to give solution to exercises proposed.

To do all this, SELFA uses a database made up of the fol-
lowing tables:

• Config: This table stores all the data related to the config-
uration of the tool, such as the Server passwords, the jsp
page address, and so on.

• Exercises: Here all the details about the exercises in the
repository are contained—the route of each proposed ex-
ercise, a description of it and the date on which it was in-
cluded or modified.

72 IEEE TRANSACTIONS ON EDUCATION, VOL. 52, NO. 1, FEBRUARY 2009

Fig. 4. Statistical bar-graph diagram.

• News: This table stores the relevant information about the
news published on the tool, such as the route of the text files
containing the news and the date on which it was published.

• Users: On this table all the data referring to the users that
have subscribed to the tool are registered, such as their
first name and surname(s), identity card number, their nick-
name and e-mail address.

• Operations: This is one of the most important tables in the
application, since it is here that the operations performed
by the users are saved. The most relevant fields in the table
are: user, exercises done and the date on which they were
submitted to the tool. This information grouped by the stu-
dent or by group of students in tabular form, can be shown
by means of a bar graph or a pie chart (see Fig. 4).

• Punctuation: The remarks and comments made about the
tool by users are saved onto this table.

The information needed to fill in the table “Operations” in the
database is extracted directly by the language processor during
the analysis of an input. The person who invokes the tool and
the date when that was done is known thanks to the execution
of an authentification process. This process is voluntary, and is

done when the person calls up the tool. In the semantic check,
the problems to be solved are analyzed and their particular type
classified—this is information which will be stored on the table.

IV. EXPERIMENTAL RESULTS

In this section, we report on the authors’ experience using
SELFA to enhance the teaching of formal languages and au-
tomata theory and to make this more attractive to the students.
The tool was evaluated with real users, the students of the
BSc in Computer Science at University of Castilla-La Mancha.
SELFA was running in the second term of the academic years
2005–2006 and 2006–2007, which was just when the classes
in the subject of FLAT began in the undergraduate course of
Computer Engineering. The number of students enrolled in
the course was 90 and 66, respectively. The tool was offered
to the students as a possibly useful aid and the usage was not
always mandatory. Nearly half of these students created an
user account in SELFA (45 and 30 students) and thus had a
user name and a password. However, only 25 and 21 students
regularly used the tool in their studies (in the academic years
2005–2006 and 2006–2007, respectively), that is, they used the

CASTRO-SCHEZ et al.: DESIGNING AND USING SOFTWARE TOOLS 73

TABLE I
SUMMARY OF THE RESULTS ON USE OF THE TOOL

TABLE II
EXERCISES CARRIED OUT ON GRAMMARS IN SUMMARY FORM

TABLE III
EXERCISES CARRIED OUT ON AUTOMATA IN SUMMARY FORM

tool more than 15 times per month during the instruction period
(see Table I).

The overall results of SELFA’s use, measured by means of
the amount of exercises done by the students (1449 and 1195 in
the academic years 2005–2006 and 2006–2007, respectively),
show that students did use this tool (see Table I). Tables II and III
show the statistics on the type and quantity of exercises done on
grammars and automata.

The authors created a questionnaire and passed it out to the
SELFA users to ascertain whether they considered the tool to
be useful by them in studying the concepts and algorithms of
FLAT. The ease of use of the tool was also included. Two ques-
tions were formulated to measure these aspects: How useful do
you find the tool? and How easy is to use?. The students who
used SELFA were asked to answer anonymously. Respondents
could choose among five possibilities to the first question: “Not
Useful” (1), “Not very Useful” (2), “Useful” (3), “Very Useful”
(4), and “Extremely Useful” (5); and other five to the second
one: “Very Difficult” (1), “Not Easy” (2), “Easy” (3), “Quite
Easy” (4), and “Very Easy” (5). Only one answer could be se-
lected. The assessment of SELFA by those students who em-
ployed the tool in their studies, as regards the ease of its use
and its usefulness is clear: they find it very useful and quite
or very easy to use. On average, students rate the tool useful-
ness as a 4.4 and 4.3 and the ease-of-use feature as a 4.3 and

TABLE IV
MEAN VALUE GIVEN TO THE TOOL BY THE STUDENTS (VALUED OVER 5)

TABLE V
ACADEMIC RESULTS OBSERVED

3.85 on a five-point scale in the academic years 2005–2006 and
2006–2007 (see Table IV).

With respect to the usefulness of the tool in teaching the
concepts of the FLAT subject, after an analysis of the marks
obtained in the exams of the academic years 2005–2006 and
2006–2007 by students who used the tool (25 and 21, respec-
tively), 24 and 10 of them passed the exam in the subject, which
is 75% and 47% of all those who passed, 32 and 21, respectively.
Moreover, these students had better results than students who
did not use the tool. The results obtained were highly satisfac-
tory, with students who used the tool have gained more knowl-
edge than those did not. SELFA has been a useful aid in the
learning of the subject of FLAT (see Table V) and so the aim is
for it to carry on in operation over upcoming academic courses.

V. CONCLUSION AND FUTURE WORK

In this paper, the authors have given a view of work done at
the School of Computer Engineering, University of Castilla-La
Mancha, Spain, to improve the teaching quality, the monitoring
of students’ work, and the assessment mechanisms in the subject
of Formal Languages and Automata Theory.

A tool called SELFA has been presented here, whose main
objective is to allow exercises on different areas of the subject
to be formulated, as well as to provide the answers to these.
SELFA can be used both by the teacher in his or her lectures in
order to make the subject topics more interesting and attractive
to students, and students in their attempts to grasp the subject
matter. Moreover, the tool allows the storage and monitoring of
each student’s work throughout the duration of a course. This
information is used to evaluate the student’s work.

SELFA design is based on a language processor (see
Sections III-B and III-C), which is executed in a client/server
architecture, allowing it to be used via the World Wide Web
(see Section III-E). This feature constitutes SELFA’s main
advantage over other tools which share the same overall goals
[18], [24]–[27].

Another advantage of SELFA is that it serves as example of
how to use theoretical and practical knowledge in the subject
to solve a real problem—with a resulting strong pedagogical
impact. In lectures has been used as an example of how to apply
in practice concepts that have been studied in theory, which has
been valued highly by the students.

Future work includes continuing experimentation with the
proposed tool and extending it, adding new operations. For

74 IEEE TRANSACTIONS ON EDUCATION, VOL. 52, NO. 1, FEBRUARY 2009

example, obtaining the regular expression from an automaton
using the characteristic equation method [5] or the construction
of an automaton from a regular expression using Thomson’s
Algorithm [31] will be added to SELFA. Several operations
have been recently implemented, they have yet to be tested
with student, so there is no usage data available. This data will
be obtained and analyzed. The final EBNF specification of the
SELFA language and operations supported by the tool can be
found in [16].

ACKNOWLEDGMENT

The authors would like to thank the School of Computer En-
gineering, University of Castilla-La Mancha, and to the students
of 2005–2006 for their help and support in this project, as well
as for their suggestions, which contributed towards its develop-
ment and improvement.

REFERENCES

[1] “Agencia nacional de evaluación de la calidad y la acreditación
(ANECA),” Libro Blanco del Título de Grado en Ingeniería Infor-
mática 2007 [Online]. Available: http://www.aneca.es/activin/docs/li-
broblanco_jun05_informatica.pdf

[2] “European commission, education and training,” The Bologna Process,
Towards the European Higher Eduation Area 2007 [Online]. Available:
http://ec.europa.eu/education/policies/educ/bologna/bologna_en.html

[3] A. O. Bilska, K. H. Leider, M. Procopiuc, O. Procopiuc, S. H. Rodger, J.
R. Salemme, and E. Tsang, “A collection of tools for making automata
theory and formal languages come alive,” in Proc. 28th ACM SIGCSE
Tech. Symp. Comput. Sci. Educ., 1997, pp. 15–19.

[4] C. M. Boroni, F. W. Goosey, M. T. Grinder, and R. J. Ross, “A par-
adigm shift! The internet, the web, browsers, Java, and the future of
computer science education,” in Proc. 29th ACM SIGCSE Tech. Symp.
Comput. Sci. Educ., 1998, pp. 145–152.

[5] J. A. Brzozowski, “Derivatives of regular expressions,” J. Assoc.
Comput. Machin., vol. 11, no. 4, pp. 481–494, 1964.

[6] C. I. Chesñevar, M. L. Cobo, and W. Yurcik, “Using theoretical
computer simulators for formal languages and automata theory,” ACM
SIGCSE Bull., vol. 35, no. 2, pp. 33–37, 2003.

[7] N. Chomsky, “Three models for the description of language,” IEEE
Trans. Inf. Theory, vol. 2, no. 3, pp. 113–124, 1956.

[8] D. Cole, R. Wainwright, and D. Schoenefeld, “Using java to develop
web based tutorials,” in Proc. 29th ACM SIGCSE Tech. Symp. Comput.
Sci. Educ., 1998, pp. 92–96.

[9] V. Devedzic, J. Debenham, and D. Popovic, “Teaching formal lan-
guages by an intelligent tutoring system,” J. Educ. Technol. Soc., vol.
3, no. 2, pp. 36–49, 2000.

[10] J. L. Diez and J. Diaz, Java Parser Project Home Page, 2007 [Online].
Available: http://paginaspersonales.deusto.es/josuka/jparser/parser.
html

[11] C. Garcia-Osorio, A. Arnaiz-Moreno, and A. Arnaiz-Gonzalez, “En-
señanza asistida de teoría de autómatas y lenguajes formales mediante
el uso de THOTH,” in XIII Jornadas de Enseñanza Univ. Inf., 2007,
pp. 425–432.

[12] C. Garcia-Osorio, A. Arnaiz-Moreno, and A. Arnaiz-Gon-
zalez, THOTH Project Home Page, 2007 [Online]. Available:
http://pisuerga.inf.ubu.es/cgosorio/THOTH/

[13] M. T. Grinder, “Animating automata: A cross-platform program for
teaching finite automata,” ACM SIGCSE Bull., vol. 34, no. 1, pp.
371–375, 2002.

[14] D. Grune, H. E. Bal, C. J. H. Jacobs, and K. G. Langendoen, Modern
Compiler Design. New York: Wiley, 2001.

[15] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to
Automata Theory, Languages and Computation. Reading, MA:
Addison-Wesley, 2006.

[16] J. Hortolano, A. Rodriguez, and J. J. Castro-Schez, SELFA Project
Home Page, 2007 [Online]. Available: http://apps.oreto.inf-cr.uclm.es/
selfa/

[17] T. Hung and S. H. Roger, “Increasing visualization and interaction in
the automata theory course,” ACM SIGCSE Bull., vol. 32, no. 1, pp.
6–10, 2000.

[18] J. F. Jodar and J. Revelles, SEFALAS Project Home Page, 2007 [On-
line]. Available: http://lsi.ugr.es/~pl/software.php

[19] D. Kelley, Automata and Formal Languages: An Introduction. En-
glewood Cliffs, NJ: Prentice-Hall, 1998.

[20] H. R. Lewis and C. H. Papadimitriou, Elements of Theory of Compu-
tation. Upper Saddle River, NJ: Prentice-Hall, 1998.

[21] J. C. Martin, Introduction to Languages and the Theory of Computa-
tion. New York: McGraw-Hill, 2003.

[22] J. McDonald, “Interactive pushdown automata animation,” ACM
SIGCSE Bull., vol. 34, no. 1, pp. 376–380, 2002.

[23] Q.-N. Tran, “Interactive symbolic software for teaching formal lan-
guages, automata and beyond,” J. Comput. Sci. Colleges, vol. 22, no.
4, pp. 129–136, 2007.

[24] M. B. Robinson, J. A. Hamshar, J. E. Novillo, and A. T. Duchowski,
“A java-based tool for reasoning about models of computation through
simulating finite automata and turing machines,” in Proc. 30th Ann.
ACM SIGCSE Symp. (Special Interest Group on Computer Science Ed-
ucation), New Orleans, LA, 1999, pp. 105–109.

[25] M. B. Robinson, J. A. Hamshar, J. E. Novillo, and A. T. Duchowski,
The Java Computability Toolkit Project Home Page, 2007 [Online].
Available: http://humboldt.sunyit.edu/JCT/

[26] S. H. Rodger and T. W. Finley, JFLAP: An Interactive Formal Lan-
guages and Automata Package. Sudbury, MA: Jones & Bartlett,
2006.

[27] S. H. Rodger and T. W. Finley, JFLAP Project Home Page, 2007 [On-
line]. Available: http://www.jflap.org

[28] P. A. Santos and J. J. Castro-Schez, “Una herramienta para la en-
señanza y aprendizaje de la asignatura Procesadores de Lenguajes,”
XII Jornadas de la Enseñanza Univ. Inf., pp. 499–506, 2006.

[29] P. A. Santos, J. Santos, and J. J. Castro-Schez, PROLETOOL Project
Home Page, 2007 [Online]. Available: http://oreto.inf-cr.uclm.es/pro-
letool/

[30] J. J. Tamagnini, S. V. Cavadini, P. L. Berdaguer, D. A. Cheda, F. M.
Pachado, and M. Petersen, SEPa! Project Home Page, 2007 [Online].
Available: http://www.ucse.edu.ar/fma/sepa

[31] K. Thompson, “Regular expression search algorithm,” Commun. ACM,
vol. 11, no. 6, pp. 419–422, 1968.

Jose Jesus Castro-Schez received the M.S. and Ph.D. degrees in 1995 and
2001, respectively, both from the Computer Science Department, University of
Granada, Spain.

He is an Associate Professor of Computer Science, University of Castilla-La
Mancha, Ciudad Real, Spain, teaching formal languages, automata theory, and
compiler technology. His research interests include: knowledge acquisition, ma-
chine learning, decision support, electronic commerce, and issues of represen-
tation in AI. He is the author of numerous papers on AI-related subjects. He is
currently interested in the educational implications of computer-supported col-
laborative learning.

Ester del Castillo received the B.S. and M.S. degrees from the Computer Sci-
ence Department, University of Granada, Spain.

She is an Assistant Professor with the Department of Technology and In-
formation Systems, Escuela Superior de Informática, University of Castilla-La
Mancha, Ciudad Real, Spain. She teaches formal languages, automata theory,
and theory of computation.

Julian Hortolano received the B.S. and M.S. degrees from the Department of
Technology and Information Systems, Escuela Superior de Informática, Univer-
sity of Castilla-La Mancha, Ciudad Real, Spain.

Alfredo Rodriguez received the B.S. and M.S. degrees from the Department
of Technology and Information Systems, Escuela Superior de Informática, Uni-
versity of Castilla-La Mancha, Ciudad Real, Spain.

